Regulation of Cell Volume in Alligator RBCs

Rachel Granberg '16, Kayla Huber '16, Rahul Thakuri '16 Doctor Douglas Light, Lake Forest College Biology Department

It's All About Cells

- Fundamental unit of life
- All organisms are made of one or more cells
- Humans contain 20-30 trillion red blood cells!

http://www.kumc.edu/instruction/ medicine/anatomy/histoweb/urinary/ renal19.htm

http://www.topnews.in/health/ disruption-nerve-cells-may-leadparkinsons-212005

Membrane-Bound or Bust

- Encloses all cells
- Regulates cell content
- Maintains steadystate conditions (homoeostasis)
- Must be selectively permeable

http://www.stemcellsinc.com/science/stem-cells-101.htm

The "Fluid Mosaic Model"

http://alevelnotes.com/The-Fluid-Mosaic-Model/129

I Get By With A Little Help From... Ion Channels

 Membranes act as barriers

 Ion channels regulate what particles enter or exit the cell (based on concentration)

http://biogeonerd.blogspot.com/2013/01/membrane-transportand-osmotic-pressure.html

Osmosis and Red Blood Cells

http://chemistry.about.com/od/imagesclipartstructures/ig/Science-Clipart/Osmosis---Blood-Cells.htm

Regulatory Volume Decrease

http://advan.physiology.org/content/28/4/155/F2.expansion

- Acute swelling triggers mechanisms to push particles (solutes)
 OUT of the cell
- Water follows by diffusion
- Cell volume decreases towards initial volume

Gap In Knowledge

- What solutes are lost during RVD?
- By what mechanisms are the solutes lost?
- How are these mechanisms controlled?

Some Models Don't Need a Runway

Do American alligator RBCs possess a robust RVD response due to reduced kidney function during hibernation?

http://advan.physiology.org/content/28/4/155/F2.expansion

Method to Our Madness

Coulter Counter

http://www.immunotox.com/Facilities/CoulterCounter.html

Ringer Solutions

https://www.doccheckshop.com/Practice/ Injection-Infusion/Other-injection-andinfusion/BBraun-Ringer-Solution.html

Losing My KCI

- Cells contain a large quantity of potassium and chloride
- Unlike most cells, chloride channels are typically open in RBCs

Hypothesis #1

 If potassium channels are necessary for RVD, then a drug (quinine) that blocks potassium channels should <u>inhibit</u> a RVD response.

RVD Relies on Potassium Efflux

Hypothesis #2

 If potassium efflux was blocked by quinine, then gramicidin should <u>prevent</u> the inhibitory effect of quinine.

RVD Relies on Potassium Efflux

Hypothesis #3

 Additionally, if potassium efflux is a rate limiting step, then adding gramicidin (which creates more K+ channels) should produce a <u>faster RVD</u> response.

Potassium Efflux is Rate Limiting

Gap In Knowledge II

There has to be a signal transduction process that opens potassium channels...

Hypothesis #4

 If PLA₂ is necessary for the cascading reaction leading to K⁺ efflux, then ONO (which blocks PLA₂) should <u>inhibit</u> a RVD response.

RVD Relies on PLA₂ Enzyme

Hypothesis #5

 If gramicidin adds K+ channels to the membrane, then the addition of gramicidin should <u>prevent</u> the inhibitory effect of ONO (consistent with PLA₂ being necessary to open K⁺ channels).

RVD Relies on PLA₂ Enzyme

The Take-Home Message

- Potassium efflux is necessary for RVD
- Potassium efflux is the rate limiting step
- Potassium efflux depends on the activation of the enzyme PLA₂

Back to the Future (Studies) I

- Determine what <u>type</u> of K+ channel is involved in RVD (e.g. patch clamp technique, pharmacological studies)
- Further examine the role of arachidonic acid and its metabolites in RVD
- Determine what caused the increased cell volume that occurred around 60 minutes

Back the Future (Studies) II

- Determine the role of calcium in RVD (e.g. chelate extracellular calcium with EGTA, fluorescence microscopy)
- Examine the potential role of amino acid efflux in RVD (e.g. taurine)
- Examine the potential role of chloride channels during RVD (patch clamp technique)

Acknowledgements

- Professor Light: Thank you for your guidance, patience, wit, and constant reminders to put safety first and/or to not put pens in our mouths.
- Richter Committee & Professor Moroney: Thank you for your time and providing us with this wonderful opportunity!
- Fellow Richters: Thank you for your moral support and the memorable times.

Got Questions?

- We hopefully have answers
- Or some good postulations