Effects of Dietary Specialization on Chemical Defense of Poison Dart Frogs

Erika Alto*
Department of Biology
Lake Forest College
Lake Forest, Illinois 60045

Abstract

Dendrobatids include some of the most toxic animals known on Earth. They are alkaloid-containing amphibians that sequester their alkaloids through the consumption of small arthropods and insects. Until recently, it was unknown how the dendrobatids were able to sequester alkaloids in their serous glands, and two hypotheses were developed to explain this phenomenon. Biosynthesis of the alkaloids by poison dart frogs and other dendrobatids themselves, was the most obvious explanation. However, the biosynthetic hypothesis quickly gave way to the dietary hypothesis following numerous, parallel experiment results. These results indicate that dendrobatids only present alkaloids if they consume alkaloid-containing arthropods and insects. Although many scientists accept the dietary hypothesis, there are still many questions regarding dendrobatids and alkaloids alike. What is the typical diet of dendrobatids? Do different arthropods or different insects contain different alkaloids? Are there various types and structures of these alkaloids? These questions are important in determining if diet actually affects the chemical defense and toxicity of poison dart frogs. Whether or not diet affects toxicity is an ongoing question regarding other amphibians such as the Andean frog (Ranitomeya virolinensis) and the European fire salamander (Salamandra salamandra). In this paper, the most significant findings and studies that support the dietary hypothesis will be reviewed in work done on poison dart frogs.

Introduction

Poison dart frogs are well-known for their brilliantly colored bodies and ability to deter predators. Their elaborate designs and bright body hues are deliberately boastful in order to ward off potential predators, a ploy known as aposematic coloration. All poison dart frogs carry venom that is considered lethal to human beings and other mammals. Poison dart frogs can be found in a variety of habitats, ranging from the tropical forests of Costa Rica to Brazil and other parts of South America. The most dangerous species of poison dart frogs is the golden poison arrow frog (Phyllobates terribilis). This frog secretes a poison known as Batrachotoxin. This Batrachotoxin is severely detrimental to humans and mammals due to its ability to interrupt the nervous system. Poison dart frogs are carnivores and feed mostly on spiders and other small insects including ants and termites that they see on the forest floor. They are able to capture the prey rather quickly by using their long, sticky tongues.

Until recently, little was known about the source of the poison dart frogs’ toxicity. Recent findings indicate that poison dart frogs obtain alkaloids from their prey or specific arthropods within their diet. It is these alkaloids that make the poison dart frog poisonous. The frogs assimilate plant poisons, which the insects and arthropods originally ingested; then those insects and arthropods are ingested by the frogs. The connection between alkaloid assimilation in poison frogs and their prey becomes increasingly clear when the comparison between captive raised poison frogs and wild caught frogs is examined. In the wild, poison dart frogs consume a broader range of arthropods and insects compared to captive breed poison frogs. This natural, wide-ranging diet allows for the assimilation between plant toxins, prey, and the poison frogs. Captive breed poison dart frogs are typically fed a diet consisting of crickets and possibly small “farm raised” arthropods, and these captive breed insects do not ingest organic plant material, which contains natural plant toxins. Therefore, the captive breed poison dart frogs do not ever develop venom, and are thus not poisonous in captivity. This lack of alkaloids in the captive bred frogs is a direct result from the poison dart frogs being raised in captivity and isolated from insects in their native habitat. Even though there is general agreement about how poison dart frogs assimilate plant poisons, what needs to be more thoroughly examined is how a varied diet, or consuming certain arthropods and insects over others, affects the chemical defenses that the frog possesses.

To fully understand how the diet affects the chemical defense of the poison dart frog, the actual acquisition of the toxic substances needs to be further elaborated on. The acquisition of toxic substances is considered to be exogenous. It means that the substances are produced from another organism, in this case arthropods or insects, and then sequestered by the poison dart frogs. Their defensive skin alkaloids have an exogenous source: a diet of small, alkaloid containing arthropods, miles, ants, and other insects. Therefore, there is a significant correlation between the dietary specialization of the poison dart frogs and their alkaloid profiles.

It was first thought that biosynthesis was responsible for the present alkaloids of the poison dart frogs. The fact that the captive frogs’ quantity of alkaloids decreased over their time in captivity, supports the fact that the poison dart frogs do not manufacture their own alkaloids. This decline in alkaloid quantity was first related to stress, but further investigation found that it was indeed a diet containing toxic arthropods that provided the alkaloids to the poison dart frogs. When experiments were originally designed to examine biosynthesis, it was seen that dendrobatids appeared to slowly lose alkaloids, while in captivity, and that captive-bred dendrobatids did not even have alkaloids. In addition, offspring of wild-caught Hawaiian frogs that were raised indoors on a diet of crickets and fruit flies were alkaloid-free. On the other hand, offspring raised outdoors and fed mainly wild-caught termites and fruit flies contained alkaloids similar to their wild-caught parents. These compelling facts made researchers turn to the dietary hypothesis as the source of alkaloids for poison dart frogs.

The dietary hypothesis states that dendrobatids obtain alkaloids through consumption, of arthropods and other small insects that ingest plant toxins. The dendrobatids actually acquire these alkaloids through a process known as sequestration. Although sequestration has been very effective and efficient for poison dart frogs, sequestration of preexisting toxins is not necessarily simpler than endogenous methods. It is possible that organisms that rely on sequestration, including poison dart frogs, may begin to...
rily on diet as a means of defense. Organisms that use sequestration as a means of attaining alkaloids, also need to develop a means of retaining them in the body, as a means of storage. One method to accomplish this is to sequester alkaloids by locking open the sodium ions in the nerve cells, thereby preserving the amount of alkaloids that are ingested. In order to do this, the nerve cells have to be able to store the sodium ions in the cells, thereby preventing the alkaloids from being excreted. This is accomplished by the use of sodium-potassium pumps, which are able to store sodium ions in the nerve cells, thereby preventing the alkaloids from being excreted.

Amphibian skin has two different kinds of glands that are considered poisonous: mucous glands and serous glands. While both glands aid in alkaloid sequestration, it has been suggested that the serous glands among amphibians play the main role. It was traditionally thought that the serous glands were too primitive for poison synthesis, and therefore, they were co-opted for storage of sequestered compounds and toxin production. However, more investigation proves to leave this thought, because the actual process of sequestration is still not fully understood. These skin-sequestered alkaloids appear to be peripherally distributed and bitter tasting. Such adaptations have been linked to the evolution of aposematism because the predators can sample the frog tissue without actually affecting injury to the poison dart frogs in a narrow diet consisting mainly of ants, or a more broad diet consisting of ants, and other alkaloid-rich arthropods. Thus, the typical diet of poison dart frogs consists of ants, mites, and many other small arthropods. The arthropods ingest various plant toxins through the consumption of leaf litter on the forest floor, and these plant toxins remain in their bodies until the poison dart frogs digest them. Furthermore, more investigation has been done to establish a connection between distinct alkaloids and arthropods. It was found that six of the twenty-eight structural classes of alkaloids come from myrmicine ants. Other alkaloid classes have been noted to come from coccinellid beetles, millipedes, and even formicine ants.

An alternative dietary source for alkaloids in poison dart frogs is oribatid mites. There are about eighty alkaloids present in the extracts of oribatid mites. These mites play a crucial role in the diet of poison dart frogs because they represent approximately ten percent of the discovered alkaloids, and also account for forty-five percent of the structural classes of the alkaloids. These mites also account for nearly forty alkaloids of unknown structure and about six of them are currently unclassified as to their structure. Therefore, these mites are a significant arthropod repository of a variety of alkaloids for the poison dart frogs. They also represent a major dietary source of alkaloids in general. It seems that the two most influencing arthropod’s in the diet of the poison dart frog includes oribatid mites and myrmicine ants. Hence, such finding proves that poison dart frogs have a much wider diet besides the dendrobatids.

Another major dietary source for alkaloids in poison dart frogs is the oribatid mites. There are about eighty alkaloids present in the extracts of oribatid mites. These mites play a crucial role in the diet of poison dart frogs because they represent approximately ten percent of the discovered alkaloids, and also account for forty-five percent of the structural classes of the alkaloids. These mites also account for nearly forty alkaloids of unknown structure and about six of them are currently unclassified as to their structure. Therefore, these mites are a significant arthropod repository of a variety of alkaloids for the poison dart frogs. They also represent a major dietary source of alkaloids in general. It seems that the two most influencing arthropod’s in the diet of the poison dart frog includes oribatid mites and myrmicine ants. Hence, such finding proves that poison dart frogs have a much wider diet besides the dendrobatids.

In conclusion, the diet of a poison dart frog does affect its chemical defense, or toxicity. The various arthropods and insects that the poison dart frogs consume each contain different alkaloids, thus giving the frogs various alkaloids. Captive-bred poison dart frogs do not sequester or even show traces of alkaloids due to an inorganic diet consisting of crickets and fruit flies. However, wild caught offspring that are raised outside and fed a diet consisting of wild-caught termites and fruit flies will contain alkaloids. Although many experiments and great amounts of evidence support the dietary hypothesis, there are still gaps in knowledge and unanswered questions relating to the diet of poison dart frogs. No definitive barrier between biosynthesis and the original dietary hypothesis has been established. The questions that remain unanswered include, (1) are there other frog species that are able to sequester alkaloids from diet besides the dendrobatids?, (2) what are the arthropod sources for the hundreds of unidentified alkaloids in arthropods?, and (3) what is the mechanism by which frogs take up alkaloids for storage in their skin glands? Therefore, it is necessary to continue research, as well as, discover and describe new alkaloids and their sources.

Note: Eukaryon is published by students at Lake Forest College, who are solely responsible for its content. The views expressed in Eukaryon do not necessarily reflect those of the College. Articles published within Eukaryon should not be cited in bibliographies. Material contained herein should be treated as personal communication and should be cited as such only with the consent of the author.

References


