Phosphorylation and Alanine-76 Contribute to \(\alpha \)-Synuclein’s Plasma Membrane Binding and Aggregation

Rebecca Brezinsky, Keith Solvang and Michael Fiske*
Department of Biology
Lake Forest College
Lake Forest, Illinois 60045

Abstract

Parkinson’s disease (PD) is an incurable neurodegenerative disease, which afflicts nearly 4 million people worldwide. The hallmark symptom of PD is the formation of Lewy bodies containing aggregated, phosphorylated, and membrane phospholipid associated \(\alpha \)-synuclein. The molecular determinants for \(\alpha \)-synuclein aggregation and membrane association are still unknown. Past studies suggest that alanine-76 and phosphorylation at serines 87 and 129 may contribute to aggregation and membrane-association, which we tested here in two yeast models. By studying phosphorylation mutants (S87D and S129D), we found evidence that phosphorylation increases \(\alpha \)-synuclein plasma membrane association in budding yeast and intracellular vesicular aggregation in fission yeast. Study of an A76R and A76E mutant demonstrated that this site promotes \(\alpha \)-synuclein membrane association in budding yeast and aggregation in fission yeast, but the extent of aggregation is sensitive to the charge of the side chain. Thus, both yeast models help illuminate the molecular basis of \(\alpha \)-synuclein pathology.

Introduction

Parkinson’s disease (PD) was first described by James Parkinson almost 200 years ago (Lee et al., 2006). Today, it is estimated that PD affects nearly 4 million people worldwide (Rochet et al., 2004). Resting tremors, rigidity, and difficulty in initiating movements are key symptoms of PD and manifest due to the death of specific dopaminergic neurons found in the substantia nigra (Lozano et al., 2005; Rochet et al., 2004). There are two forms of PD: familial and sporadic (Polymeropoulos et al., 2007). Sporadic PD has been linked to environmental toxins, pesticides, and head trauma. However, the molecular mechanisms behind the onset of sporadic PD are still unclear. Familial PD is better understood, and at least seven genes have been identified that, when mutant, cause familial Parkinson’s disease. These genes are \(\alpha \)-synuclein (Polymeropoulos et al., 1997), Parkin (Kitada et al., 1998), UCH-L1 (Valente et al., 2004), DJ-1 (Bonifati et al., 2003), PINK 1 (Valente et al., 2004), LRRK2 (Paesan-Ruiz et al., 2004; Zimprich et al., 2004), and ATP13A2 (Fonzo et al., 2007). Aggregated \(\alpha \)-synuclein is found in both forms of the disease, suggesting that aggregation is important in both sporadic and familial PD onset (Spillantini et al., 1998). These formations are called Lewy bodies and are composed of several other proteins in addition to \(\alpha \)-synuclein (Spillantini et al., 1998; Yamada et al., 2004).

The \(\alpha \)-synuclein present in the Lewy bodies of human PD patients is heavily modified. In human patients, \(\alpha \)-synuclein is heavily phosphorylated at serine-129 and to a lesser extent at serine-87 (Fujisawa et al., 2002). Phosphorylation at ser-129 increases aggregation of \(\alpha \)-synuclein in vitro and in vivo (Fujisawa et al., 2002; Gorbayuk et al., 2007). Although the role of phosphorylation in promoting aggregation is well understood, the role of phosphorylation in cell death is less clear. Chen et al., (2004) observed phosphorylation dependent toxicity in a Drosophila model. However, in a rat model, ser-129 phosphorylation had a protective effect (Gorbayuk et al., 2007, McFarland et al., 2009). Due to this conflict, the impact of phosphorylation on cellular toxicity needs to be investigated further.

The tendency of \(\alpha \)-synuclein to aggregate is an important pathological feature of PD. The amino acids 71-82 make up the non-beta amyloid component region (NAC) of \(\alpha \)-synuclein (Giasson et al., 2001). This region contains numerous hydrophobic amino acids and is essential for protein aggregation (Giasson et al., 2001). The importance of the NAC domain in \(\alpha \)-synuclein’s ability to aggregate is illustrated by the structure of \(\beta \)-synuclein. \(\beta \)-synuclein differs structurally from \(\alpha \)-synuclein in that it lacks the NAC region and does not aggregate (Biere et al., 2000). Also, when the NAC domain is deleted from \(\alpha \)-synuclein, aggregation does not occur in vitro or in vivo (Giasson et al., 2001, Periquet et al., 2007). In 2004, alanine-76 within the NAC region was mathematically predicted to directly influence \(\alpha \)-synuclein aggregation (Chiti et al., 2004). Giasson et al., (2001) showed that when alanine-76 was mutated to a charged amino acid, \(\alpha \)-synuclein’s ability to aggregate was affected. While the NAC region has been studied extensively in model organisms, the specific amino acid alanine-76 has not been well studied beyond cell culture. Thus, the role of alanine-76 in aggregation and membrane association is not well understood in vivo.

In this study, we used a yeast model of Parkinson’s disease to evaluate the contribution of phosphorylation and alanine-76 on \(\alpha \)-synuclein’s properties. Yeast models are cost effective, and experiments can be finished quickly. Additionally, the genome has been sequenced, and yeast genes are highly homologous to humans (Bostein et al., 1997). Finally, yeast have a history of successfully modeling neurodegenerative diseases (Outeiro and Lindquist, 2003; Dixon et al., 2005; Zabrocki et al., 2005; Cooper et al., 2006). In our lab, wild-type \(\alpha \)-synuclein generally localizes to the plasma membrane in our budding yeast model (Sharma et al., 2008) and aggregates in our fission yeast model (Brandis et al., 2006). This allows us to study the roles of serine phosphorylation and alanine-76 to the two PD pathology linked \(\alpha \)-synuclein properties: phospholipid binding and aggregation.

We first tested the hypothesis that phosphorylation at serine-129 and serine-87 contributes to the aggregation and protective properties of \(\alpha \)-synuclein by studying \(\alpha \)-synuclein phosphorylation mimic mutants S87D and S129D. We asked if these phosphorylation mutants would alter their localization compared to wild-type, impact toxicity, or accumulate in our yeast models. Phosphorylation deficient mutants were studied by a collaborator and used as controls (Fiske et al., 2009). We found that phosphorylation increased membrane association in budding yeast and intracellular vesicular aggregation in fission yeast.

Next, we tested the hypothesis that alanine-76 contributes to \(\alpha \)-synuclein membrane localization and aggregation. Our approach was to mutate the hydrophobic

*This author wrote the paper for Biology 324: Advanced Cell Biology taught by Dr. Shubhik DebiBumman
alanine to a hydrophilic arginine. We showed that alanine-76 promoted membrane association and aggregation in budding and fission yeast, respectively. However, the extent of aggregation was sensitive to the charge of the mutated amino acid.

Materials and Methods

Materials and Methods listed below are adapted from Sharma et al. (2006), and described below briefly again.

α-Synuclein Constructs

Human wild-type (WT) α-synuclein cDNAs were provided by Christopher Ross of Johns Hopkins University. Using Invitrogen site directed mutagenesis, WT α-synuclein was mutated into A76E, A76R, S87A, S129A, S87D, and S129D. In order to confirm the mutations, the mutants were sent to the University of Chicago for sequencing. WT and mutant α-synuclein cDNAs were subcloned into the pYES2.1/V5-His-TOPO yeast expression vector for budding yeast and the pNMT1 TOPO-TA expression vector for fission yeast. In order to tag GFP to the C-terminus of α-synuclein, α-synuclein cDNAs were subcloned into the pcDNA3.1/C-terminal GFP and pcDNA3.1/N-terminus GFP mammalian expression vectors using Invitrogen. The GFP tagged α-synuclein gene was then PCR-amplified and subcloned using the pYES2.1/V5-His-TOPO yeast expression vector and the pNMT1 TOPO-TA expression vector. The α-synuclein-GFP pYES2.1/V5-His-TOPO and pNMT1 TOPO-TA vectors were separately transformed into DH5α E. coli cells. The parent pYES2 vector, parent pNMT1 vector (provided by Judy Potashkin, Rosalind Franklin University of Medicine and Science), and GFP in pYES2.1/V5 -TOPO yeast expression vector for fission yeast and the α-synuclein expression vectors using Invitrogen. The GFP tagged α-synuclein, cells were grown in SC-glucose media was used. These six different dilutions were then pipetted onto SC-URA plates and incubated at 18 and 24 hours. For each student t-test performed on the collective readings for the three Optical Density analyses performed for budding yeast and fission yeast. Calculations were made at 18 and 24 hours. For each student t-test, the mutants were being compared in growth to the parent plasmid.

Dilution Spotting Yeast cells were grown overnight in 10 mL of SC-URA glucose (EMM-Thiamine for fission yeast) for a day. Cells were washed and counted before being subcultured five times by pipetting 20 μL of cells in 80 μL of water five times. These six different dilutions were then pipetted onto SC-URA plate media (EMM-thiamine for fission yeast) solid media dishes and onto non-inducing solid media dishes for a control.

Statistical Analysis Optical density: Student t-test performed on the collective readings for the three Optical Density analyses performed for budding yeast and fission yeast. Calculations were made at 18 and 24 hours. For each student t-test, the mutants were being compared in growth to the parent plasmid.

Microscopy: Using DIC images, 750 cells were counted for the mutants and parent plasmid at 24 and 48 hours. Fluorescence images were then evaluated and labeled as cytoplasmically diffused, aggregated, halo, or halo and diffused. The final counts for each cell type, mutant or parent plasmid were then compared.

Results In this study, two types of yeast models were used to study the properties of α-synuclein: budding yeast strain BY4741 and fission yeast strain TCP1. The pYES2 galactose-
Figure 1: Phosphorylation mimic Alpha-synuclein is membrane bound and non-toxic in BY4741 budding yeast
B. Localization quantification: 750 cells of each transformed alpha-synuclein construct in BY4741 were counted and scored for five different fluorescence localization patterns: diffuse, halo, foci, weak halo and diffuse, and weak halo and foci (n=2).
C. Protein expression: Western blotting was used to assess the amount of WT and phosphorylation mutant alpha-synuclein constructs present in BY4741 yeast at 24 and 48 hours. WT, S129A, S87D, and S129D showed similar expression. Expression of S87A decreases slightly compared to WT (n=2).
D. Growth curve: Optical density 600 nm was used to evaluate growth in BY4741 budding yeast expressing WT, S87A (18 hrs P=0.409 and 24 hrs P=0.265), S129A (18 hrs P=0.792 and 24 hrs P=0.489), S87D (18 hrs P=0.516 and 24 hrs P=0.665), and S129D (18 hrs P=0.203 and 24 hrs P=0.057). Phosphorylation mimic and deficient mutants and WT alpha-synuclein were statistically compared to PP. (n=3).
E. Spotting: Five-fold serial dilutions on glucose (non-inducing media) and galactose (inducing media). WT, S87A, S129A, S87D, and S129D showed no toxicity. (n=3).

Figure 2: Phosphorylation mimic Alpha-synuclein aggregates and localizes to the cytoplasm in fission yeast
A. Alpha-Synuclein localization: Fluorescence microscopy was used to visualize GFP-tagged alpha-synuclein at 24 and 48 hrs. WT aggregates at 24 and 48 hrs. At 24 hrs, S87D aggregates while S129D is cytoplasmically diffuse by 48 hrs. Likewise, S87A and S129A localized to intracellular organelles and to the cytoplasm (n=1).
B. Protein expression: Western blotting was used to assess the amount of WT, phosphorylation mimic, and deficient mutant alpha-synuclein present in TCP1 yeast at 24 and 48 hrs. Expression of S87A, S129A, and S87D showed similar expression. S129D showed a slight decrease in expression (n=2).
C. Growth curve: Optical density 600 nm was used to evaluate growth in TCP1 fission yeast expressing WT, S87A (18 hr P=0.320 and 24 hr P=0.492), S129A (18 hr P=0.250 and 24 hr P=0.304), S87D (18 hr P=0.433 24 hr P=0.447), and S129D (18 hr P=0.570 and 24 hr P=0.533). Phosphorylation mimic mutants and wild-type alpha-synuclein were statistically compared to PP (n=3).
D. Spotting: Five-fold serial dilutions on Emm+T (non-inducing media) and Emm-T (inducing media). WT, S87A, S129A, S87D, and S129D are shown. WT, phosphorylation mimic and deficient mutants showed slight toxicity when compared to PP and GFP-alone in TCP1. However, no phosphorylation dependent toxicity was observed (n=3).
Figure 3: Alanine-76 is important to membrane localization.
A. Alpha-Synuclein localization: Alpha-synuclein WT, A76R, and A76E localization at 24 and 48 hours post expression. WT localized to the plasma membrane, A76R, and A76E localized to the cytoplasm. However, by 48 hrs A76R localizes to the plasma membrane (n=2).
B. Localization quantification: 750 cells of each transformed α-synuclein construct in BY4741 were counted and scored for five different fluorescence localization patterns: diffuse, halo, foci, weak halo and diffuse, and weak halo and foci (n=2).
C. Protein expression: Western blotting was used to assess the amount of WT and alanine-76 mutant α-synuclein constructs present in BY4741 yeast at 24 and 48 hrs. WT, A76E, and A76R showed similar expression in by4741 yeast. (n=2).
D. Growth curve: Optical density 600 nm was used to evaluate growth in BY4741 budding yeast expressing WT, A76R (18hrs P=0.248 and 24hrs P=0.959), and A76E (18hrs P=0.384 and 24hrs P=0.477). No significant toxicity was observed with WT, A76R or A76E when compared to PP (n=3).
E. Spotting: Five-fold serial dilutions on glucose (non-inducing media) and galactose (inducing media). No alpha-synuclein dependent toxicity was observed (n=3).

Figure 4: Alanine-76 is important to aggregation if fission yeast
A. Alpha-Synuclein localization: Alpha-synuclein WT, A76R, and A76E localization at 24 and 48 hours post expression. WT and A76R aggregated in fission yeast. However, A76R localized to the cytoplasm. (n=2).
B. Protein expression: Western blotting was used to assess the amount of WT and alanine-76 mutant α-synuclein present in TCP1 yeast at 24 and 48 hrs. WT and A76R showed similar expression. A76E showed a dramatic decrease in expression when compared to WT (n=2).
C. Growth curve: Optical density 600 nm was used to evaluate growth in TCP1 fission yeast expressing WT, A76R (18hrs P= 0.576 and 24hrs P=0.908), and A76E (18hrs P=0.622 and 24hrs P=0.530). Alanine-76 mutants and wild-type alpha-synuclein were compared to PP and GFP-alone. No toxicity was observed. (n=3).
D. Spotting: Five-fold serial dilutions on Emm+T (non-inducing media) and Emm-T (inducing media). WT, A76R, and A76E showed alpha-synuclein dependent toxicity when compared to PP and GFP-alone, however, no additional toxicity was observed in the alanine-76 mutants. (n=3).
promoting vector expressed α-synuclein in budding yeast and the PNMT1 vector in fission yeast. We utilized four assays to assess the properties of α-synuclein. Live cell GFP microscopy evaluated where α-synuclein localized. Western blotting analyzed the expression of α-synuclein in the cells. Finally, two established toxicity assays, OD-600 growth curve and five fold serial dilution spotting, analyzed growth of the cells.

Phosphorylation is important to α-synuclein’s membrane binding

We first evaluated the effect of phosphorylation on α-synuclein in the BY4741 budding yeast strain. We analyzed localization and showed that wild-type binds to the plasma membrane. In support of our hypothesis, S87D and S129D α-synuclein phosphorylation mimic mutants localized to the plasma membrane similarly to wild-type by 48 hours (Figure 1A). Likewise, the α-synuclein phosphorylation deficient mutants, S87A and S129A, did the opposite and localized to the cytoplasm and less to the plasma membrane (Figure 1A). However, the phosphorylation mimics were expressed at levels similar to WT (Figure 1B). Furthermore, cells expressing α-synuclein, whether wild-type or phosphorylation mutants, all grew similarly to cells expressing the parent vector and GFP (Figure 1C & D). Our next finding was complex and documented. Paleologou et al. (2005) showed that wild-type α-synuclein tends to form intracellular aggregates in fission yeast. In support of our hypothesis, S87D, α-synuclein - mutant localized to intracellular vesicles similar to wild-type (Figure 2B). Likewise, S87A and S129A localized to the cytoplasm with less aggregation. Interestingly, S129D formed aggregates, but to a lesser extent than S87D and wild-type and also localized heavily to the cytoplasm (Figure 2A). Again, the phosphorylation mimics did not correlate with a significant change in expression. However, a slight decrease in expression was seen in S129D when compared to S87D (Figure 2B). Lastly, no significant decrease in growth was observed among fission yeast expressing any of the α-synuclein constructs (Figure 2C). The five fold spotting assay, however, did show a slight α-synuclein dependent toxicity (Figure 2D). Phosphorylation did not contribute any additional protection to the cells (Figure 2D).

α-Synuclein aggregation is affected by phosphorylation

Secondly, we asked if α-synuclein aggregation would be affected by phosphorylation in TCP1 fission yeast. We first showed that wild-type α-synuclein tends to form intracellular aggregates in fission yeast. In support of our hypothesis, S87D and S129D α-synuclein phosphorylation mimic mutants localized to the plasma membrane similarly to wild-type by 48 hours (Figure 1A). Likewise, the α-synuclein phosphorylation deficient mutants, S87A and S129A, did the opposite and localized to the cytoplasm and less to the plasma membrane (Figure 1A). However, the phosphorylation mimics were expressed at levels similar to WT (Figure 1B). Furthermore, cells expressing α-synuclein, whether wild-type or phosphorylation mutants, all grew similarly to cells expressing the parent vector and GFP (Figure 1C & D).

Alanine-76 contributes to α-synuclein’s plasma membrane association

Our next goal was to evaluate the affects of the hydrophobic amino acid alanine -76 within the NAC domain. We first analyzed localization and showed that wild-type α-synuclein in BY4741 budding yeast strain localized to the plasma membrane (Figure 3A). In support of our hypothesis, A76E and A76R α-synuclein localized to the cytoplasm and less to the plasma membrane (Figure 3A). Over time, however, A76R became primarily membrane bound while A76E continued to localize to the cytoplasm (Figure 3B). Neither alanine-76 mutation altered expression (Figure 3B). Lastly, cells expressing α-synuclein, whether wild-type or alanine-76 mutants, all grew similar to GFP and parent plasmid (Figure 3C & D).

Alanine-76 is important to the aggregation of α-synuclein

Finally, we examined the role of alanine-76 in fission yeast. First we showed that wild-type α-synuclein aggregates in fission yeast (Figure 4A). In support of our hypothesis, A76E localized to the cytoplasm and less aggregation was seen (Figure 4A). The A76R mutant phenotype was complex and seemed to aggregate and localize to the cytoplasm. Interestingly, A76R did not cause a change in expression while A76E decreased significantly in expression (Figure 4B). Finally, α-synuclein dependent toxicity was observed in the spotting assay but no significant growth decrease in growth curve analysis (Figures 4C & D). However, no additional toxicity due to A76R or A76E when compared to wild-type α-synuclein was observed (Figure 4D).

Discussion

The tendency for α-synuclein to aggregate and associate with phospholipids is important in Parkinson’s disease pathology since Lewy bodies are composed of aggregated and lipid-associated α-synuclein. The goal of this study was to understand the importance of phosphorylation in α-synuclein’s ability to bind membranes, aggregate, and induce toxicity. Secondly, we sought to understand the role of alanine-76 in α-synuclein’s ability to bind membranes and aggregate. We first found that phosphorylation increases α-synuclein plasma membrane association in budding yeast and intracellular vesicular aggregation in fission yeast. Secondly, we found that alanine-76 promotes α-synuclein membrane association in budding yeast and aggregation in fission yeast. Lastly, we found that neither of the phosphorylation mimics enhanced toxicity in budding or fission yeast.

Phosphorylation is important to α-synuclein membrane binding and aggregation

Our major finding that S87D and S129D increases plasma membrane localization in budding yeast, and intracellular vesicle formation in fission yeast, supported our hypothesis that phosphorylation contributes to α-synuclein’s ability to bind to phospholipids and aggregate. Likewise, S87A and S129A did the opposite and localized to the cytoplasm in both fission and budding yeast. Also, while S129D localized to the cytoplasm, some fraction was localized to the membrane bound as well. These findings further demonstrate that phosphorylation at serine 129 and also serine 87 contributes to PD pathology linked properties of α-synuclein as shown in previous studies in vitro (Fujiwara et al., 2002; Smith et al., 2005). Studies have shown that phosphorylation at serine-129 enhances aggregation in vivo (Gorbatyuk et al., 2007). However, Chen et al., (2005) showed that ser-129 phosphorylation did not cause aggregation. The finding that phosphorylation at ser-129 in budding yeast became more cytoplastically diffuse further demonstrates the role of phosphorylation in large aggregates but not smaller oligomeric α-synuclein aggregates (Silveira et al., 2008). Some aggregates that were not bound to vesicles were seen but α-synuclein was mainly cytoplastically diffuse. Small oligomeric species, which have been linked to toxicity, may form when α-synuclein is not able to be phosphorylated. These small species may be too small to see under live cell GFP microscopy, but could be forming in both the budding and fission yeast.

Also, the contribution of phosphorylation to α-synuclein’s ability to bind phospholipids is not well documented. Paleologou et al., (2008) showed phosphorylated α-synuclein did not alter membrane interactions when compared to phosphorylation deficient mutants. This contradicts our results; however, Sharon et al., (2003) showed that aggregated α-synuclein in Lewy bodies, which are mainly composed of phosphorylated α-synuclein, bound to the phospholipids of vesicles. The findings in our budding yeast model help demonstrate that phosphorylated α-synuclein does help bind phospholipids. Studies showed that α-synuclein changes conformation in order to bind to membranes. Thus, when phosphorylated in budding and fission yeast, α-synuclein may adopt a shape that allows
binding to phospholipids. The extra expression in fission yeast may allow α-synuclein, while bound to phospholipids, to aggregate well and even bind the plasma membrane (Brandis et al., 2006). Thus, these findings suggest that phosphorylation of α-synuclein is not only important in aggregation but also membrane binding as well.

Alanine-76 contributes to α-synuclein’s aggregation and membrane binding

Our second major finding is that alanine-76 is important to α-synuclein’s ability to bind lipids and aggregate. These findings supported the hypothesis that alanine-76 contributes to α-synuclein’s ability to localize to the plasma membrane and aggregate. A76E localized to the plasma membrane in both budding and fission yeast while A76R localized to the cytoplasm in budding yeast and seemed to aggregate in fission yeast. This inability to cytoplasmically localize in budding yeast and extensively in budding yeast is supported by Giasson et al., (2001). Glutamic acid was shown to be a stronger hydrophilic mutation than arginine, possibly contributing to the different properties of the two mutants. Changing this hydrophobic amino acid to a hydrophilic one may completely change the properties of the NAC region. The NAC region is important to α-synuclein aggregation; changing its hydrophobic property may be similar to deleting the region or at least an important part of the region (Waxman et al., 2009). Soper et al., (2008) showed that when the NAC region was intact, α-synuclein formed aggregates bound to vesicles. Without the NAC region, however, these aggregates did not formed. Hydrophobicity plays a significant role in the tertiary structure of a protein. Thus, without the key property of a hydrophobic region, α-synuclein may not have been able to take on the structure that allows it to aggregate.

The field lacks data on the NAC region of α-synuclein and its role in membrane binding. Our data further develops the role of alanine-76 in phospholipid binding. Soper et al., (2008) showed that, without the NAC domain, aggregates could not form and these aggregates are bound to vesicles. This may mean that, to some extent, the NAC region is important to membrane binding. This may be a small role because the same experiment showed that α-synuclein could still bind to the plasma membrane without the NAC region. Suggested earlier, as with phosphorylation, α-synuclein may need a certain tertiary structure in order to bind phospholipids. Since phosphorylation can still occur in these mutants, but the NAC region’s property has changed, the certain tertiary structure that α-synuclein forms may be impacted by both factors. Thus without one or the other we have shown a decrease of membrane binding in our budding yeast (Sharma et al., 2006).

No toxicity due to phosphorylation

Our final finding is that phosphorylation did not cause additional toxicity in our yeast model. Our hypothesis was not supported, and additionally the lack of phosphorylation did not cause toxicity in our yeast model either. In fact we showed α-synuclein toxicity in our fission yeast only. Interestingly, other labs have shown α-synuclein toxicity in their budding yeast models. (Outeiro and Lindquist, 2003). The lack of toxicity in our budding yeast model may be due to several key reasons. First, the vector system we use may not express enough protein to cause misfolding and aggregation. We used a 2µ expression system instead of having the protein implemented into the genome. Thus, we may not have been able to over express α-synuclein sufficiently to cause misfolding and aggregation. If this occurs, certain proteins such as Hsp70 may help α-synuclein fold correctly preventing aggregation (Hartl et al., 2002). Secondly, the strain of yeast we used may affect the properties of α-synuclein. A-synuclein may have a slightly different role in BY4741 or TCP1 when compared to other strains, though they are similar organisms (Brandis et al., 2006). Thus, these findings suggest that phosphorylation of α-synuclein is not only important in aggregation but also membrane binding as well.

We expected phosphorylation would to be a toxic agent to the cells. At first, these results conflict with two major studies: in a fly and rat model it has been shown that phosphorylation cause toxicity and protection respectively (Chen et al., 2004; Gorbatyuk et al., 2007). This difference in toxicity may be due to the organism or the type of vector expressing α-synuclein. However, our finding may further develop the role of phosphorylation and toxicity that has been shown in previous studies (Silveira et al., 2008; McFarland et al., 2009). Both studies showed that α-synuclein toxicity was independent of phosphorylation. These interesting conflicts in the field could be due to the fact that each lab uses a different expressing vector or over-express α-synuclein to a larger extent. However, recently McFarland et al., (2009) showed that phosphorylation at tyrosine 125 protected against the toxicity due to serine-129 phosphorylation. If serine 129 phosphorylation is additionally toxic to our yeast cells, there may be enough tyrosine-125 phosphorylation to protect against this toxicity. This is supported by the results showing that phosphorylation deficient mutants do not show additional toxicity either.

There are important studies that still need to be completed. First, additional research will complete analysis on phosphorylation and the role of alanine-76 on binding and aggregation in different strains of yeasts. Different strains may help lead to better understandings of the roles of phosphorylation and alanine-76 in aggregation and membrane binding. Secondly, truncation mutants of α-synuclein will be evaluated. Evidence shows that the c-terminus is important in the tertiary structure of a protein. Thus, truncation of the three regions of c-terminus may lead to additional insights into properties of α-synuclein. Finally, properties of α-synuclein due to phosphorylation at tyrosine-125 should be evaluated.

Conclusion

The mechanism behind α-synuclein’s ability to aggregate is still a question that remains unanswered. Answering the question whether phosphorylation speeds up aggregation could lead to new drug targets for Parkinson’s disease patients. If aggregation is toxic to cells and phosphorylation enhances α-synuclein’s ability to aggregate, scientists could target certain phosphatases that dephosphorylate α-synuclein which would hopefully decrease the amount of aggregated α-synuclein. Understanding phosphorylation and alanine-76’s role in aggregation is still necessary and could help lead to possible drug treatments.

Acknowledgements

We would first like to thank Dr. DebBurman for all of the wonderful help and mentoring he has done for us. We would also like to recognize the biology 324 classes. Carlos Becerra ‘10, Jaime Perez ‘10, Will Press ‘11, Alina Konnikova ‘11, and finally Danny Sanchez ‘11 for all of the support and intellect given throughout the course. Finally we want to thank you to Beth Herbert and the workers-Tasheka Aikman ‘10, Kaylyn Gasparotto ‘11, Jordanah Evans ‘12, and Madhavi Senagolage ‘12 in the stockroom. Without your help none of our experiments could have been
possible. This work was partially supported by the National Institutes of Health and the National Science Foundation.

Note: Eukaryon is published by students at Lake Forest College, who are solely responsible for its content. The views expressed in Eukaryon do not necessarily reflect those of the College. Articles published within Eukaryon should not be cited in bibliographies. Material contained herein should be treated as personal communication and should be cited as such only with the consent of the author.

References

